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I. Introduction

In Ref. 1, it was presented a method, primarily conceived as an emergency backup system, that addressed
the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial
attitude and angular rate in the absence of nominal control capability. The proposed concept permits the
arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic
roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept,
the technique of single input single output (SISO) feedback linearization using the Lie derivative method2

was employed and the problem was solved for different number of jets and for different configurations of the
inertia matrix: the axisymmetric inertia matrix (Ixx > Iyy = Izz), a partially complete inertia matrix with
Ixx > Iyy > Izz, Ixz 6= 0 and a realistic complete inertia matrix with Ixx > Iyy > Izz, Iij 6= 0. The closed-
loop stability of the proposed non-linear control on the total angle of attack, θ, was analyzed through the zero
dynamics of the internal dynamics3 for the case where the inertia matrix is axisymmetric (Ixx > Iyy = Izz).
This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (Ixx > Iyy > Izz), which
is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control
law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the
same methods that were used in Ref. 1. In particular, it will be proven that the control system is stable in
closed-loop when the actuators only provide a roll torque.

II. System Equations

The equations describing the control problem are those of a rotating rigid body with extra terms describing
the effect of the control torques. They therefore consist of kinematic equations relating the angular position
with the angular velocity, and dynamic equations describing the evolution of angular velocity.

A. Dynamic Equations

The dynamics of the rotational motion of a rigid body are described by the Euler’s equations. Let I be
the inertia matrix of the spacecraft, and let ~ω denote the angular velocity vector with components along a
body-fixed reference frame located at the center of gravity (c.g.) and aligned along the principal axes of the
spacecraft. The dynamic equations are presented in Eq. (1), where ~ku denotes the control torque vector.

I~̇ω =

 0 ωz −ωy
−ωz 0 ωx

ωy −ωx 0

 I~ω + ~ku = ω×I~ω + ~ku (1)

B. Kinematic Equations

The kinematic equations relate the components of the angular velocity vector with the rates of a set of
parameters that describe the relative orientation of two reference frames: an inertial frame and the body-
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fixed frame. In the formulation of this problem, the inertial frame OX̂V ,ŶV ,ẐV is associated to the velocity
vector. It is defined with its origin located at the c.g. of the spacecraft, with the X̂V axis pointed along the
velocity vector, the ŶV axis pointed along the angular momentum of the trajectory, and ẐV axis pointed
along ŶV × X̂V . The body-fixed frame Ox̂,ŷ,ẑ is defined by the body axes. In this case, when the rotation
angles are zero, the x̂ axis goes along the longitudinal axis, aligned with X̂V , being positive toward the heat
shield, ŷ is aligned with −ŶV and ẑ with ẐV . For convenience, we will consider a 1-3-1 sequence of rotations
which is a type 2 Euler sequence. The rotations involved are ϕ about X̂V , θ about Ẑ ′V and ψ about x̂, where
Ẑ ′V is the resulting ẐV after the first rotation. This selection results in the kinematic equations, Eq. (2)

ϕ̇ = (−ωy cosψ + ωz sinψ) csc θ
θ̇ = ωy sinψ + ωz cosψ
ψ̇ = ωx + (ωy cosψ − ωz sinψ) cot θ

(2)

C. Equations of Motion

Combining Eq. (1) and Eq. (2) yield the attitude control problem. We can see that θ, the variable that we
want to control first, only depends on ωy, ωz and ψ in the kinematic equations, therefore the equation for
ϕ̇ can be ignored. This makes sense since θ, as well as its angular components, angle of attack and sideslip
angle, are invariant to a rotation around the velocity vector. Hence the equations of motion can be reduced
to

~̇ω = I−1ω×I~ω + I−1~ku

θ̇ = ωy sinψ + ωz cosψ
ψ̇ = ωx + (ωy cosψ − ωz sinψ) cot θ

(3)

III. Nonlinear SISO System

The system in Eq. (3) can be written in the form of a SISO system

ẋ = f(x) + g(x)u
y = h(x)

like

x = ( ωx ωy ωz θ ψ )T

f(x) =

 I−1ω×Iω

ωy sinψ + ωz cosψ
ωx + (ωy cosψ − ωz sinψ) cot θ


g(x) = ( I−1~k 0 0 )T , h(x) = θ − θd

(4)

with x ∈ <n, where n is the system order (5 in our case), with f and g smooth vector fields on <n and h
a smooth nonlinear function, and where θd is the desired, or targeted θ. A large class of SISO nonlinear
systems can be made to have linear input-output behavior through a choice of nonlinear state feedback
control law that is given with generality by

u =
1

LgL
γ−1
f h(x)

(
−Lγfh(x) + v

)
where Lfh (x) and Lgh (x) stand for the Lie derivatives of h with respect to f and g respectively, γ is the
relative degree of the system and the input v is a scalar that results from the product of the feedback gain
vector times the error vector. This control law yields the γ-th order linear system from input v to input
y : d

γy
dtγ = v, where γ is the smallest integer for which LgLifh (x) ≡ 0, i = 0, ..., γ−2. It is easier to understand

γ as the smallest integer for which the control signal appears in dγy/dtγ for the first time.
By inspection of Eq. (4) we can see that the relative degree γ will depend on the specific form of the

product I−1~k. Therefore, both, the inertia matrix and the geometric layout of the jets are the two factors
that affect the relative degree of the system. Note that γ can only take the values 2 or 3: it cannot be 1
since the first derivative of the output, θ̇, does never contain the control; it is 2 if the vector I−1~k has either
its 2nd or 3rd component different than zero; and γ would be 3 if the vector I−1~k only had its 1st component
different than zero. A γ higher than 3 is not possible.
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The relative degree, and hence the product I−1~k, has important implications in the stability character-
istics of the system under control since the dimension of its internal dynamics is given precisely by n − γ.
When γ is defined and smaller than n, the nonlinear system in Eq. (4) can be transformed into a so called
normal form, which shall allow us to take a formal look at the stability of the system through the notions of
internal dynamics and zero dynamics. The normal states become Φ(x) = ( ξ1 · · · ξγ η1 · · · ηn−γ )T

and the normal form of the system can be written as

ξ̇1 = Lfh(x) = ξ2

ξ̇2 = L2
fh(x) = ξ3

...
ξ̇γ = Lγfh(x) + LgL

γ−1
f h(x)u

η̇1 = Lfη1 = q1(ξ, η)
η̇2 = Lfη2 = q2(ξ, η)
...
η̇n−γ = Lfηn−γ = qn−γ(ξ, η)
h(x) = ξ1

(5)

where the vector field η is a solution of the set of partial differential equations

∇ηj(x)g(x) = 0 1 ≤ j ≤ n− γ (6)

To show that the nonlinear system in Eq. (4) can indeed be transformed into the normal form of Eq.
(5), we have to show that we can construct a local diffeomorphism Φ(x) such that Eq. (5) is verified. To
show that Φ(x) is a diffeomorphism, it suffices to show that its Jacobian ∂Φ/∂x is invertible, i.e., that the
gradients ∇ξi and ∇ηj are linearly independent (span(∂Φ(x)/∂x) ∈ <5).

The internal dynamics associated with the input-output linearization correspond to the last n− γ equa-
tions of the normal form and they constitute the unobservable part. However, the control must account for
the stability of the whole dynamics and, therefore, the system will be stable if the internal dynamics remain
bounded. To assess the stability of the internal dynamics we will use the zero dynamics of the system, which
is defined as the internal dynamics of the system when its output is kept at zero by the input. As mentioned
in Ref. 3, the zero dynamics is an intrinsic feature of a nonlinear system that does not depend on the choice
of the control law or the desired trajectories.

The constraint that the output h is identically zero in zero dynamics implies that all of its time derivatives
are zero. Thus, the corresponding internal dynamics of the system, or zero dynamics, describes a motion
restricted to the n − γ dimensional manifold defined by ξ = 0. Also, in order for the system to be in zero
dynamics, the input control u must be such that h stays at zero. This means that in zero dynamics the
normal form can be written as (ξ̇1 = 0, . . . , ξ̇γ = 0, η̇1 = q1(0, η), . . . , η̇n−γ = qn−γ(0, η), h = 0)

The analysis of the zero dynamics of the internal dynamics will be carried out for the control on θ in
the axis-symmetric inertia case only. The resulting expressions in the intermediate and realistic inertias are
practically intractable. Nonetheless, we will see that useful conclusions can be from the axis-symmetric case
can be extended to the other more realistic cases.

IV. Closed-loop Stability with Roll Torque

In the case in which we have a diagonal non-axisymmetric matrix of inertia and in which only a roll
torque is provided, the equations of motion become

ω̇x

ω̇y

ω̇z

θ̇

ψ̇

 =


aωxωz

bωxωz

cωxωy

ωy sinψ + ωz cosψ
ωx + (ωy cosψ − ωz sinψ) cot θ

+


I−1
xx

0
0
0
0

u (7)

where a = (Iyy − Izz)/Ixx, b = (Izz − Ixx)/Iyy and c = (Ixx − Iyy)/Izz.
The relative degree of the system, γ, is 3 and, thus, the control law will be given by u = (v−L3

fθ)/(LgL
2
fθ),

which is shown in Appendix A.
The external part of the normal system is given by
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ξ1 = Φ1 = h(x) = θ − θd
ξ2 = Φ2 = Lfh(x) = θ̇

ξ3 = Φ3 = L2
fh(x) = θ̈

where Lfh (x) stands for the Lie derivative of h with respect to f .
The internal part of the normal system will have 2 components and must satisfy ∇ηj(x)g(x) = 0

∂η1
∂x g(x) = ∂η1

∂ωx
I−1
xx = 0

∂η2
∂x g(x) = ∂η2

∂ωx
I−1
xx = 0

The solution of the internal system must result in Φ(x) = ( ξ1 ξ2 ξ3 η1 η2 )T being a diffeomor-
phism. One solution that satisfies this requirement is given by η1 = ωy, η2 = ωz. Therefore, the internal
system becomes

η̇1 = ω̇y = bωxωz

η̇2 = ω̇z = cωxωy
(8)

In the axisymmetric case, it could be demonstrated that ωx was constant in zero dynamics. However,
that is not necessarily the case now. To check whether the system in Eq. 8 is stable, ω̇y is divided by ω̇z,
resulting in

ω̇y
ω̇z

=
bωz
cωy

(9)

Operating on Eq. 9 and integrating results in∫
ωydωy −

b

c

∫
ωzdωz = 0 ⇒ ω2

y −
b

c
ω2
z = C (10)

where C is the integration constant which includes the factor 1/2 coming from the integration. Eq. 10 can
be rewritten as

ω2
y

C
+

ω2
z

C(−c/b)
= 1 (11)

which is the standard equation of an ellipse. Note that in Eq. 11 the fraction c/b is negative because
Ixx > Iyy > Izz.

This mathematical development proofs that the internal system in Eq. 8 is bounded and thus, that the
closed-loop control system can be said to be stable.

A. Test Case

In the case of an axisymmetric matrix of inertia the transversal rate ωT = ωT0 = (ω2
y0 +ω2

z0)1/2 was constant
throughout the control process. Now, this condition does not hold. Nevertheless, the settling time will be
determined following the logic that was used in the axisymmetric case presented in Ref. 1. A settling time
ts = (2π/ωT0)δ is selected, where δ is a factor that represents some percentage of added or subtracted time.
In this case, δ = 1.25, which represents a 25% time addition. Nevertheless, for all practical purposes, the
important time is the one that marks the moment where θ becomes confined below the side wall angle, which
is always smaller than ts.

For the design of the linear controller, the feedback gain vector ~K is calculated using a pole placement
technique. It is selected such that a desired set of closed-loop pole locations ~p is matched. The location of
the poles was chosen such that there was no overshoot in θ, at least when the control signal is not saturated.
The location of the poles will vary with ωT0 in the following manner:

p = ( −1 −5 −7 )5/ts (12)

Figure 1 presents the results for the case in which the initial rates are at the edge of a typical rate
deadband limits. The moments of inertia are given by Ixx = 5900 kg m2, Iyy = 5100 kg m2 and Izz = 4700
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kg m2. This case has the following initial conditions: ωx0 = 2 deg/sec, ωy0 = -2 deg/sec, ωz0 = -2 deg/sec,
θ0 = 150 deg, ψ0 = 120 deg, θd = 9 deg, ts = 159.1 sec. Figure 1 is divided in two parts. The left side
presents the locus of the positive direction of the spacecraft’s longitudinal axis (+x axis) in the projection
of the two dimensional attitude sphere in terms of the angles of attack and sideslip. Each of the contours
represents an iso-θ trajectory spaced every ten degrees around the velocity vector, located at the center of
the diagram. A spacecraft exactly flying heat shield forward would show its locus right at (0,0), whereas a
spacecraft exactly flying apex forward would show its locus at (0,±180). The ring in the center represents
a typical side wall angle of 32.5 deg, therefore, as a first approximation, to have the capsule protected from
the heat of the entry means that θ should remain confined within that ring. The right side of the chart
shows the time histories of the control signal, the total angle of attack and the roll rate. The control signal
is expressed as a percentage of the maximum acceleration that the system can generate; the plot showing θ
also indicates the side wall angle as a dashed horizontal line and the settling time ts; and the roll rate plot
also shows the closest ballistic roll rate value | pb | or − | pb |. The case considered in this note is that of
a ballistic capsule because there are no products of inertia and, thus, the center of gravity is contained in
the axis of symmetry of the spacecraft. In any case, the roll rate is shown because it is a byproduct of this
type of control acting on the roll axis. Should the resulting roll rate be so high that it violates the medical
constraints on angular rates or a possible constraint on the deploy of the landing system, the roll rate could
be controlled in the presence of atmosphere as it is explained in chapter VII in Ref 1.

Figure 1. Test case results.

It can be noted in Figure 1 that the control signal becomes periodic in steady state. Nevertheless, the
control can be turned off after t = ts, a point where the error signal is close to zero. That condition ensures
the total angle of attack confinement and a ballistic entry. Figure 2 shows the results when the control signal
is turned off at t = 175.0 sec.

V. Conclusion

It has been shown that for the diagonal non-axisymmetric matrix of inertia with relative degree 3, there
exists a feedback control law that can transfer the system to a desired total angle of attack with θ̇ = θ̈ = 0
while the rest of the state variables remain bounded. A feedback control law based on Feedback Linearization
that satisfies the above condition has been formulated. The controller’s gains were designed to depend on
the initial conditions and they were generated following a standard pole placement methodology.

Also, for the diagonal non-axisymmetric inertia matrix, the closed loop stability of the system when
controlling θ with roll torque was demonstrated to be globally stable.
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Figure 2. Test case results. Control turned off at t = 175.0 sec.

Appendix A - Derivation of the Control Law

The control law u is given by

u = (v − L3
fθ)/(LgL

2
fθ) (13)

where

Lfθ = (∂θ/∂x)f(x) = ωy sinψ + ωz cosψ
L2
fθ = (∂Lfθ/∂x)f(x) = ωx[ωy cosψ(c+ 1) + ωz sinψ(b− 1)] + (ωy cosψ + ωz sinψ)2 cot θ

L3
fθ = (∂L2

fθ/∂x)f(x) = [ωy cosψ(c+ 1) + ωz sinψ(b− 1)]ω̇x
+ [ωx cosψ(c+ 1) + 2(ψ̇ − ωx) cosψ]ω̇y
+ [ωx sinψ(b− 1)− 2(ψ̇ − ωx) sinψ]ω̇z
− ϕ̇2θ̇

+
[
[ωz cosψ(b− 1)− ωy sinψ(c+ 1)]− 2(ψ̇ − ωx)θ̇

]
ψ̇

LgL
2
fθ = (∂L2

fθ/∂x)g(x) = I−1
xx [ωy cosψ(c+ 1) + ωz sinψ(b− 1)]
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